X
تبلیغات
رایتل

فواصل عمومی‌ گازها در مسائل فشارسنجی کوچک هستند و در نتیجه برای این گازها از تغییر فشار با ارتفاع چشم پوشی می‌کنیم، ولی در محاسباتی که با فاصله‌های عمومی ‌بزرگ سروکار دارند، مانند مسائل مربوط به جو سیارات ، اغلب باید تغییر فشار گاز با ارتفاع را در نظر بگیریم. با مراجعه به معادله دیفرانسیل dP/dz = -γ که فشار ، وزن مخصوص و ارتفاع را به هم ارتباط می‌دهد، اکنون فرض می‌کنیم، γ یک متغیر است و به این ترتیب تاثیرهای تراکم‌پذیری را امکان‌پذیر می‌کند. خودمان را به گاز کامل محدود می‌کنیم که این فرض برای هوا و اکثر عناصر آن در گسترده نسبتا وسیعی از فشار و دما صحت دارد. (g/V=γ)

حالت اول

اگر گاز کامل تکدما باشد، در این حالت ، معادله حالت گاز نشان می‌دهد که حاصلضرب PV ثابت است. بدین ترتیب ، در هر مکان داخل سیال با استفاده از اندیس 1 که داده‌های معلوم را نشان می‌دهد، می‌توان نوشت:

PV=P1V1=Cte



 

(P=P1exp(-γ1(z-z1)/P1


 

حالت دوم

اگر دما با ارتفاع بطور خطی تغییر ‌کند، تغییر دما برای این حالت به صورت زیر است:

T=T1+kz



که در آن T1 عبارت است از دما در داده (z=0) که آن را اغلب آهنگ افت می‌نامند و ثابت است. در مسائل زمینی k منفی خواهد بود. برای اینکه بتوانیم متغییرهای معادله dP/dz=-γ را جدا کنیم، باید γ را از معادله حالت بدست آوریم و در نهایت خواهیم داشت:

P=P1(T1/(T1+kz))g/kR